alternating layers, related by inversion, offset with respect to each other. The average intermolecular distance between the C and O atoms of the naphthopyran rings related in this manner is 3.5 (1) \AA. The layers are connected by pairs of hydrogen bonds formed between the carboxyl groups, as well as those involving the water molecules. Inversion centers along the c axis relate pairs of coordinated Na ions which lie near this axis. Hydrogen bonding between the carboxylic acid groups occurs perpendicular to the z direction and separates from each other the Na ion pairs created by coordination and related by the inversion centers.

The support by PPG Industries of LJF is gratefully acknowledged, as is the partial support of this research through the purchase of the diffractometer system by an NIH grant.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

Antsyshinina, A. S., Dikareva, L. M., Porai-Koshits, M. A., Fykin, L. E., Dudarev, V. Ya. \& Gusejnov, M. G. (1982). Koord. Khim. 8, 1256-1260.
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 71, 148. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Fitzgerald, L. J., Gallucci, J. C. \& Gerkin, R. E. (1991a). Acta Cryst. B47, 776-782.
Fitzgerald, L. J., Gallucci, J. C. \& Gerkin, R. E. (1991b). Acta Cryst. C47, 2315-2319.
Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
Grigor'eva, L. P. \& Chetkina, L. A. (1975). Kristallografiya, 20, 1289-1290.
Jeffrey, G. A. (1987). In Patterson and Pattersons, edited by J. P. Glusker, B. K. Patterson \& M. Rossi, pp. 193-221. Oxford Univ. Press.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kofman, A. G., Chernysh, G. V., Shigalevskii, V. A. \& Vorozhtsov, G. N. (1988). Zh. Org. Khim. 24(9), 1973-1978.
Macdonald, A. L., Morrison, P., Murray, A. \& Freer, A. A. (1991). Acta Cryst. C47, 728-730.

Molecular Structure Corporation (1989). TEXSAN. TEXRAY Structure Analysis Package. Version 5.0. MSC, The Woodlands, Texas, USA.
Speakman, J. C. (1972). Struct. Bonding (Berlin), 12, 141-199.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Structures of $\left[(L)(C O)_{4} \operatorname{ReMo}(C O)_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left(L=\mathrm{CO},{ }^{t} \mathrm{BuNC}\right)$

By Wayne L. Ingham, S. Don Travlos, Jan C. A. Boeyens, Mark Berry and Neil J. Coville*
Applied Chemistry and Chemical Technology Centre, Department of Chemistry, University of the Witwatersrand, PO WITS 2050, Johannesburg, Republic of South Africa

(Received 19 March 1991; accepted 12 September 1991)

Abstract

Octacarbonyl- $1 \kappa^{5} \mathrm{C}, 2 \kappa^{3} \mathrm{C}-2\left(\eta^{5}\right)$-cyclopentadienemolybdenumrhenium ($\mathrm{Mo}-\mathrm{Re}$), $\left[(\mathrm{CO})_{5} \mathrm{ReMo}-\right.$ $\left.(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](A), M_{r}=571.2$, monoclinic, $P 2_{1} / c$, $a=7.046$ (1),$\quad b=24.967$ (2),$\quad c=9.174$ (1) $\AA, \quad \beta=$ $107.95(2)^{\circ}, V=1535.2 \AA^{3}, Z=4, D_{x}=2.47 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Мо $K \alpha)=0.7107 \AA, \quad \mu=88.2 \mathrm{~cm}^{-1}, \quad F(000)=$ 1056.0, $T=293 \mathrm{~K}, R=0.037$ for 2028 unique reflections. (tert-Butyl isocyanide-2 κ C)-heptacarbonyl$1 \kappa^{4} C, 2 \kappa^{3} \mathrm{C}-2\left(\eta^{5}\right)$-cyclopentadienemolybdenumrhenium $(\mathrm{Mo}-\mathrm{Re}), \quad\left[\left({ }^{\prime} \mathrm{BuNC}\right)(\mathrm{CO})_{4} \mathrm{ReMo}(\mathrm{CO})_{3}\left(\eta^{5}-\right.\right.$ $\mathrm{C}_{5} \mathrm{H}_{5}$)] (B), $M_{r}=626.3$, triclinic, $P \overline{1}, a=7.108$ (4), b $=9.731$ (1),$\quad c=14.240$ (2) $\AA, \quad \alpha=90.247$ (6), $\quad \beta=$ 89.969 (5) , $\gamma=87.297(5)^{\circ}, V=983.9 \AA^{3}, Z=2, D_{x}$ $=1.054 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.7107 \AA, \quad \mu=$ $34.3 \mathrm{~cm}^{-1}, F(000)=593.8, T=293 \mathrm{~K}, R=0.024$ for

^[* To whom correspondence should be addressed.]

0108-2701/92/030465-04\$03.00

5240 unique reflections. The ${ }^{t} \mathrm{BuNC}$ ligand is found attached to the Re atom in an equatorial site in (B). The ${ }^{t} \mathrm{BuNC}$ group in (B) is found to influence the $M-\mathrm{CO}$ bond lengths on both the Mo and Re atoms relative to (A). In both structures the group(s) on Re closest to the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring on Mo bends in towards the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring.

Introduction. Little information is available on the substitution chemistry of mixed metal dimer carbonyl complexes (Roberts \& Geoffrey, 1982) and in particular on the site of attachment of an incoming ligand to the metal dimer. While investigating the CO substitution reactions of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo} M(\mathrm{CO})_{8}\right]$ ($M=\mathrm{Mn}, \mathrm{Re}$) with isocyanides we observed that the products obtained were influenced by the Group 7 metal. Thus, reaction with $M=\mathrm{Mn}$ (Ingham, Billing,
© 1992 International Union of Crystallography

Levendis \& Coville, 1991) yielded $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ $\left.\mathrm{Mo}(\mathrm{CO})_{3}\right]_{2}$ (Wilkinson, 1954) and $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{8^{-}}\right.$ $\left.\left({ }^{[} \mathrm{BuNC}\right)_{2}\right]$ (Albers \& Coville, 1982) while reaction with $M=\operatorname{Re}$ gave a dimer substituted product [$\eta^{5}-$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{MoRe}(\mathrm{CO})_{7}\left({ }^{(} \mathrm{BuNC}\right)\right] \quad$ (Ingham \& Coville, 1992). To permit understanding of these differing results we have carried out the crystal structure determinations of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{MoRe}(\mathrm{CO})_{7}(L)\right][L=$ CO (A), $\left.{ }^{\text {'BuNC }}(B)\right]$. It is to be noted that some earlier crystallographic data have been reported for $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{MoRe}(\mathrm{CO})_{8}\right] \quad$ (Struchkov, Anisimov, Osipova, Kolobova \& Nesmeyanov, 1967).

Experimental. (A) was obtained from the reaction between $\left[\mathrm{Re}(\mathrm{CO})_{5}\left(\mathrm{SO}_{3} \mathrm{CF}_{3}\right)\right]$ (Nitschke, Schmidt \& Trogler, 1985) and $\mathrm{Na}\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{3}\right]$ (Hayter, 1963) while (B) was prepared from the reaction of (A) with ${ }^{~}{ }^{\mathrm{BuNC}}$ in the presence of PdO catalyst (Ingham \& Coville, 1992). Both (A) and (B) were purified by column chromatography and orange crystals suitable for X-ray analysis were obtained by slow crystallization of the materials from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane mixtures at 273 K .
(A): Crystal $0.55 \times 0.30 \times 0.15 \mathrm{~mm}$, photography established space group $P 2_{1} / c$, Nonius CAD-4 fourcircle diffractometer. Mo $K \alpha$ graphite-monochromated radiation, $\omega-2 \theta$ scan [scan width ($0.80-$ $0.35 \tan \theta)^{\circ}$, scan speed $\left.5.49^{\circ} \mathrm{min}^{-1}\right], 3<\theta<30^{\circ}$, $h 0-6, k-24-24, l 0-8$, cell constants from leastsquares refinement of the θ values of 25 general reflections, 4157 intensities measured, 2028 reflections with $I>4 \sigma(I)$.
(B): Crystal $0.52 \times 0.33 \times 0.24 \mathrm{~mm}$, photography established space group $P \overline{1}$, Nonius CAD-4 fourcircle diffractometer. Mo $K \alpha$ graphite-monochromated radiation, $\omega-2 \theta$ scan [scan width ($0.80-$ $0.35 \tan \theta)^{\circ}$, scan speed $5.49^{\circ} \mathrm{min}^{-1}$], $3<\theta<30^{\circ}$, $h-9-9, k-13-13, l 0-19$, cell constants from leastsquares refinement of the θ values of 25 general reflections, 5935 intensities measured, 5240 reflections with $I>3 \sigma(I)$.

For both structures Lorentz-polarization and empirical absorption corrections [max., min. transmission factors $99.92,41.86 \%$ for (A), $99.86,68.74 \%$ for (B)] were applied. Linear and approximate isotropic crystal decay was minor and no correction was made for this during processing.

Patterson (Re, Mo atoms) and difference Fourier techniques were employed to solve the structures using normal heavy-atom procedures. Full-matrix least-squares refinement (on F) (SHELX82; Sheldrick, 1982) with all non-H atoms anisotropic and H atoms in calculated positions was performed. During refinement of (B) unaccounted electron density was observed in the region of the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring. This unaccounted electron density was attributed to rotational disorder of the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring. A model with
idealized $\mathrm{C}_{5} \mathrm{H}_{5}$ rings as regular pentagons with each atom in each ring assigned $\frac{1}{2}$ site occupancy was used and the pentagons were refined as rigid bodies.

The weighting scheme used for both (A) and (B) was $w=\left[K \sigma^{2}(F)\right]^{-1}$. Final R and $w R$ for (A) are 0.037 and 0.027 , and for (B) 0.024 and 0.023 .* Max. $\Delta / \sigma=0.017$ for $(A), 0.015$ for (B). 207 refined parameters for $(A), 231$ for (B). Scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV) and anomalous-dispersion corrections for Mo and Re from Cromer \& Liberman (1970). Residual electron density in the final difference maps was within 0.94 and $-1.0 \mathrm{e} \AA^{-3}$ for (A) and 0.86 and $-1.6 \mathrm{e} \AA^{-3}$ for (B).

Discussion. The stereochemistries of (A) and (B) are illustrated by ORTEP (Johnson, 1965) plots in Figs. 1 and 2 respectively, which also show the numbering schemes used in the analyses. Table 1 contains the positional and thermal parameters of (A) and (B)

[^1]

Fig. 1. An ORTEP (Johnson, 1965) plot of structure (A) showing the numbering system used. (H atoms omitted.)

Fig. 2. An ORTEP (Johnson, 1965) plot of structure (B) showing the numbering system used. (H atoms omitted.)

Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$ for (A) and (B) with e.s.d.'s in parentheses

$$
U_{\mathrm{eq}}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }_{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j} .
$$

	x	y	z	$U_{\text {eq }}$
(A)				
Mo	-687 (2)	1087 (0)	1287 (2)	38 (0)
Re	772 (1)	1427 (0)	4789 (1)	44 (0)
Cl	-3503 (36)	659 (8)	-283 (28)	78 (5)
C2	- 3866 (32)	691 (8)	1126 (31)	74 (5)
C3	- 4050 (27)	1255 (7)	1431 (28)	65 (4)
C4	- 3752 (29)	1558 (7)	206 (26)	61 (4)
C5	- 3463 (28)	1180 (10)	-871 (23)	76 (5)
C6	975 (33)	492 (6)	2469 (21)	60 (4)
C7	951 (33)	833 (6)	- 126 (24)	59 (4)
C8	1078 (23)	1716 (6)	1476 (18)	48 (3)
C9	1200 (39)	1709 (7)	6842 (21)	69 (4)
C10	3330 (30)	1794 (6)	4662 (23)	60 (4)
C11	-883 (29)	2069 (5)	3790 (21)	57 (4)
Cl2	-1918 (41)	1010 (7)	4900 (28)	71 (5)
Cl 3	2397 (31)	759 (6)	5682 (21)	57 (4)
O6	1855 (31)	121 (5)	2978 (17)	87 (4)
07	1660 (32)	663 (6)	-950 (19)	103 (4)
O8	2120 (23)	2083 (4)	1333 (16)	83 (3)
O9	1559 (32)	1906 (6)	7963 (21)	105 (0)
$\mathrm{Ol0}$	4716 (20)	1998 (6)	4681 (22)	93 (4)
O11	-1872 (21)	2415 (4)	3286 (18)	72 (3)
O 12	-3238(28)	804 (6)	5002 (30)	120 (0)
O13	3283 (23)	399 (5)	6197 (15)	65 (3)
(B)				
Mo	909 (1)	2510 (1)	3718 (0)	36 (0)
Re	681 (0)	2232 (0)	1493 (0)	31 (0)
Cl	3752 (22)	3692 (14)	3875 (11)	48 (1)
C2	4276 (22)	2281 (14)	3535 (11)	48 (1)
C3	3771 (20)	1297 (16)	4164 (10)	48 (1)
C4	3009 (20)	1958 (14)	4936 (10)	48 (1)
C5	2990 (21)	3384 (15)	4804 (10)	48 (1)
C6	-395 (9)	843 (7)	3407 (4)	42 (2)
C7	- 1112 (9)	2580 (8)	4629 (5)	55 (2)
C8	-723 (9)	4038 (7)	3226 (4)	54 (1)
C9	949 (8)	1823 (6)	188 (4)	45 (1)
C10	- 1808 (8)	1399 (6)	1549 (4)	44 (1)
C11	-648 (8)	4003 (6)	1196 (4)	45 (1)
C12	3098 (9)	3155 (6)	1502 (5)	44 (1)
C13	2023 (7)	315 (5)	1753 (4)	36 (1)
C14	3500 (9)	-2170 (6)	1932 (5)	46 (1)
C15	1917 (10)	-3028 (6)	2317 (5)	49 (2)
C16	5170 (10)	-2160 (7)	2597 (6)	67 (2)
C17	4096 (11)	- 2608 (7)	947 (5)	88 (2)
$\mathrm{C}^{\prime} 1$	3390 (20)	1363 (16)	4489 (10)	48 (1)
$\mathrm{C}^{\prime} 2$	2823 (19)	2518 (14)	5052 (10)	48 (1)
C'3	3164 (20)	3759 (15)	4551 (10)	48 (1)
$\mathrm{C}^{\prime} 4$	4002 (21)	3308 (15)	3722 (11)	48 (1)
$\mathrm{C}^{\prime} 5$	4158 (22)	1872 (14)	3658 (12)	48 (1)
N	2727 (7)	-756 (5)	1855 (3)	42 (1)
O6	- 1087 (8)	-200 (5)	3321 (4)	52 (2)
07	- 2268 (7)	2596 (7)	5196 (4)	94 (2)
O8	- 1697 (7)	4979 (5)	3053 (4)	99 (2)
O9	1117 (7)	1547 (5)	-586(3)	75 (1)
O 10	- 3253 (6)	938 (5)	1532 (4)	60 (1)
Oll	-1390 (7)	4999 (4)	959 (3)	66 (1)
Ol 2	4470 (7)	3721 (5)	1457 (4)	62 (1)

and Table 2 contains selected bond distances and angles.
The main features observed on comparison of the two structures, (A) and (B), are described below:
(i) Substitution of the CO group has occurred on Re in an equatorial site (Fig. 2).
(ii) The structures have very similar geometries with two CO ligands being nearly eclipsed [C13, C6 in $(A), \mathrm{C} 11, \mathrm{C} 8$ in $(B)]$ in both structures (Fig. 3).
(iii) The Mo-Re bond length increases on substitution of a CO group by ${ }^{\text {B }} \mathrm{BuNC}$ (3.172 to $3.188 \AA$). [In an earlier report (Struchkov, Anisimov, Osipova,

Table 2. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for (A) and (B) with e.s.d.'s in parentheses

	(A)	(B)
Mo-Re	3.172 (1)	3.188 (1)
Mo-C $\mathrm{C}_{\text {Rung av }}$	2.380 (25)	2.377 (11)
Mo-C6	1.994 (14)	1.959 (5)
Mo-C7	2.083 (33)	1.924 (5)
Mo-C8	1.978 (16)	1.980 (4)
$\mathrm{Re}-\mathrm{C} 9$	1.946 (21)	1.906 (4)
$\mathrm{Re}-\mathrm{Cl} 0$	2.057 (24)	1.984 (4)
$\mathrm{Re}-\mathrm{Cll}$	2.027 (13)	1.977 (4)
$\mathrm{Re}-\mathrm{Cl2}$	2.192 (13)	1.978 (4)
$\mathrm{Re}-\mathrm{Cl} 3$	2.046 (14)	2.093 (4)
$\mathrm{C}-\mathrm{C}_{\text {Ring av }}$	1.42 (4)	1.42 (1)
C6-Mo-Re	72.3 (5)	71.0 (1)
C7-Mo-Re	130.0 (3)	128.6 (1)
$\mathrm{C} 8-\mathrm{Mo}-\mathrm{Re}$	72.6 (5)	70.8 (1)
C6-Mo-C7	76.5 (9)	78.4 (2)
C7-Mo-C8	80.9 (7)	78.7 (2)
$\mathrm{C} 8-\mathrm{Mo}-\mathrm{C} 6$	107.3 (7)	104.7 (2)
C9-Re-Mo	169.3 (7)	169.0 (1)
C10-Re-Mo	94.5 (6)	93.1 (1)
$\mathrm{Cll}-\mathrm{Re}-\mathrm{Mo}$	78.0 (5)	100.0 (1)
Cl2-Re-Mo	84.6 (7)	84.1 (1)
C13-Re-Mo	98.9 (5)	82.4 (1)
C9-Re-Cl0	91.0 (1)	91.5 (2)
C9-Re- Cl 11	92.7 (8)	90.2 (2)
C9-Re-Cl2	90.0 (1)	91.6 (2)
C9-Re-Cl3	90.4 (7)	87.6 (2)

Kolobova \& Nesmeyanov, 1967) a value of $3.12 \AA$ was reported for the $\mathrm{Mo}-\mathrm{Re}$ bond length.] This bond length is to be compared with $\mathrm{Mo}-\mathrm{Re}=$ 3.111 (2) \AA for $\left[\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{CPh})\right]$ (Fischer, Huttner, Lindner, Frand \& Kreissel, 1976). All other reported structures of dimers containing an $\mathrm{Re}-\mathrm{Mo}$ bond also contain a bridging group and the $\mathrm{Re}-\mathrm{Mo}$ bond lengths are consequently much shorter. Structures include: $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}(\mu-\mathrm{CO})_{2} \mathrm{Re}(\mathrm{CO})-\right.$ $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$], Mo- $\mathrm{Re}=2.959$ (1) \AA (Mink, Welter, Young \& Stuckey, 1979); $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mu-\mathrm{CO})-\right.$ $\left.(\mu-\mathrm{CMeCMe}) \operatorname{Re}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)\right], \quad \mathrm{Mo}-\mathrm{Re}=$ 2.943 (2) \AA, and $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mu-\mathrm{CO})(\mu-\mathrm{CPhCPh})-\right.$ $\left.\mathrm{Re}(\mathrm{CO})_{3} \mathrm{P}\left(\mathrm{OMe}_{3}\right)\right], \quad \mathrm{Mo}-\mathrm{Re}=2.959(3) \AA \quad$ (Beck, Müller \& Nagel, 1986). This is also revealed in the bridged trimer complex $\left[\mathrm{Re}_{2} \mathrm{Mo}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{8}\right]$ -$\left[\mathrm{Mo}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{3}\right], \mathrm{Mo}-\mathrm{Re}=2.909$ (2) \AA (Vergamini, Vahrenkamp \& Dahl, 1971).
(iv) Although the Mo-C6 and Mo-C8 bond lengths are relatively unaffected by substitution of CO by 'BuNC, the Mo-C7 bond which is trans to the Mo- Re bond shortens (2.08 to $1.92 \AA$) on going from (A) to (B). This suggests that $\operatorname{Re}(\mathrm{CO})_{4} R \mathrm{NC}$ is a poorer π-accepting fragment than the $\operatorname{Re}(\mathrm{CO})_{5}$ fragment.
(v) Significant shortening is observed for all equatorial $\mathrm{Re}-\mathrm{CO}$ bonds in (B) relative to (A). This effect is a result of the better σ-donating, poorer π-accepting capacity of the ' BuNC group relative to CO.
(vi) The $\mathrm{Re}-\mathrm{Mo}-\mathrm{CO}$ angles are near equivalent in (A) and (B) and this relates to the steric compactness associated with the seven-coordinate Mo atom.
(vii) The Mo- $\mathrm{Re}-\mathrm{CO}$ bond angles differ slightly in the two structures. It is also to be noted that the ligands on Re , closest to the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring on Mo , bend in towards the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring $[(A) \mathrm{Mo}-\mathrm{Re}-\mathrm{Cl1}=78$, $\mathrm{Mo}-\mathrm{Re}-\mathrm{Cl2}=84^{\circ} ; ~($ B $) \quad \mathrm{Mo}-\mathrm{Re}-\mathrm{Cl2}=84$, $\mathrm{Mo}-\mathrm{Re}-\mathrm{C} 13=83^{\circ}$ (Fig. 3). This bending is a consequence of the relatively small size of the $\mathrm{C}_{5} \mathrm{H}_{5}$ ligand relative to the three CO ligands (du Plooy, Pickl \& Coville, 1992).
(viii) The Mo- $\mathrm{Re}-\mathrm{C} 9$ angle in both structures is 169°. However, C9 is perpendicular to a plane containing the four equatorial Re ligands (CO, 'BuNC) with C9 bending towards the side of the molecule which contains the $\mathrm{C}_{5} \mathrm{H}_{5}$ group (Fig. 3).

The crystallographic data show that addition of ${ }^{t} \mathrm{BuNC}$ to (A) results in Mo-Re bond lengthening, as a result of either steric or electronic effects. Substitution of a CO ligand on Mn in $\left[\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{Mn}(\mathrm{CO})_{5}\right](C)$ by ' BuNC to give $\left[\left({ }^{5}{ }^{5}-\right.\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{MoMn}(\mathrm{CO})_{7}{ }^{\left.\left({ }^{\mathrm{C}} \mathrm{BuNC}\right)\right]}$ (D) can be expected to

Fig. 3. Projection down the $\operatorname{Re}-\mathrm{Mo}$ bond of (a) structure (A) and (b) structure (B). (H atoms omitted.)
give a similar increase in the $\mathrm{Mo}-\mathrm{Mn}$ bond length relative to the starting material. On electronic grounds the influence of the ${ }^{t} \mathrm{BuNC}$ group in (B) and (C) should be similar. However, since the $\mathrm{Mo}-\mathrm{Mn}$ bond in (C) is much shorter than the Mo-Re bond in (A), the steric interaction of the ' BuNC in (D) with the $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{3}$ fragment can be expected to be more severe than in (B). This would give rise to the bond homolysis which is observed (Ingham, Billing, Levendis \& Coville, 1991) and implies that steric factors associated with ligands in metal dimers will play an important role in determining metal dimer stability.

Financial support from the University and the FRD is acknowledged. Christine Allen is thanked for her assistance in the crystallographic data manipulation.

References

Albers, M. O. \& Coville, N. J. (1982). S. Afr. J. Chem. 35, 139-143.
Beck, W., Müller, H.-J. \& Nagel, U. (1986). Angew. Chem. Int. Ed. Engl. 25, 734-735.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Fischer, E. O., Hutiner, G., Lindner, T. L., Frand, A. \& Kreissel, F. R. (1976). Angew. Chem. Int. Ed. Engl. 15, 157-158.
Hayter, R. G. (1963). Inorg. Chem. 2, 1031-1035.
Ingham, W. L., Billing, D. G., Levendis, D. C. \& Coville, N. J. (1991). Inorg. Chim. Acta, 187, 17-21.

Ingham, W. L. \& Coville, N. J. (1992). Inorg. Chem. Submitted.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Mink, R. I., Welter, J. J., Young, P. R. \& Stuckey, G. D. (1979). J. Am. Chem. Soc. 101, 6928-6933.

Nitschke, J., Schmidt, S. P. \& Trogler, W. C. (1985). Inorg. Chem. 24, 1972-1978.
Plooy, K. E. du, Pickl, W. \& Coville, N. J. (1992). Coord. Chem. Rev. Accepted.
Roberts, D. A. \& Geoffrey, G. L. (1982). In Comprehensive Organometallic Chemistry, Vol. 6, edited by E. W. Abel, F. G. A. Stone \& G. Wiliinson, pp. 763-877. Oxford: Pergamon Press.
Sheldrick, G. M. (1982). SHELX82. Program for crystal structure determination. Univ. of Cambridge, England.
Struchiov, Yu. T., Anisimov, K. N., Osipova, O. P., Kolobova, N. E. \& Nesmeyanov, A. N. (1967). Dokl. Akad. Nauk SSSR, 172, 107-110.
Vergamini, P. J., Vahrenkamp, H. \& Dahl, L. F. (1971). J. Am. Chem. Soc. 93, 6326-6327.
Wilkinson, G. (1954). J. Am. Chem. Soc. 76, 209-211.

[^1]: * Lists of structure factors, bond lengths and angles, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54650 (44 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

